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Local adaptive methods for convection dominated problems
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SUMMARY

In this paper, we consider rigorous a posteriori error estimates for convection dominated initial value
problems including recent results for those with degenerating di�usion. These estimates are important to
control the adaptive local mesh re�nement for numerical computations, in particular for the simulation of
the biodegradation process. Several results obtained by numerical experiments will be shown. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In order to compute numerical approximations of exact solutions of PDEs we want to mini-
mize the computational costs in order to achieve a given tolerance, i.e. a given upper bound
for the error between the exact and the numerical solution. One way to do this, is the method
of local mesh re�nement, which is controlled by the numerical solution itself on the basis
of a posteriori error estimates. They measure the error between the exact and the numerical
solution in terms of the numerical solution which is known. For elliptic and parabolic prob-
lems there exists a well developed theory which can be used to accelerate numerical codes
considerably (see References [1–12]).
But if the PDEs are convection dominated with small di�usion, the constants in the a

posteriori error estimates based on the L2 theory can grow exponentially with decreasing
di�usion. The situation will become even worse for pure convection problems, in particular
for conservation laws. A posteriori error estimates in the H−1;2-norm for the error and in
the L2-norm for the local error for linear symmetric hyperbolic systems have been shown
in Reference [13]. In Reference [14] non-linear scalar conservation laws in ID have been
considered. In that paper the author could estimate the error in the Lip′-norm, a special dual
norm, by the residual.
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Figure 1. Schematic picture of the �ow.

Just recently, we were able to prove a rigorous a posteriori error estimate for �nite volume
schemes on unstructured grids, discretizing the initial value problem for scalar conservation
laws in multi-dimensions. Contrary to the elliptic case this estimate is based on the L1-theory.
The starting points for the proof are the Kruzkov entropy condition and the Kuznetsov [15]
theory for getting local estimates. These a posteriori estimates take into account the �nite
propagation of perturbations of solutions for conservation laws. This means the local grid
re�nement is necessary only within the cone of dependence.
Closely related to this class of problems are convection di�usion problems with degenerate

di�usion. The di�usion may degenerate on an open set, controlled by the solution itself if
the di�usion is non-linear or by given di�usion coe�cients. Also for this kind of PDEs
a posteriori error estimates, which hold uniformly with respect to the di�usion, have been
proved. The proof is mainly due to the concept of the generalization of entropy solutions to
convection di�usion problems with degenerating di�usion.
A challenging problem for numerical approximations is the simulation of biodegradation

[16] i.e. the transport and reaction of contaminants in porous media. We consider a channel
�lled with a porous medium (see Figure 1). Everywhere in the porous medium we have
initially a small amount of biomass and, except in the well, oxygen. Initially we inject a
substrate (e.g. oil) into the well. Then this substrate is transported by the underlying �uid with
velocity u to the right part of the porous medium. The substrate will be degraded by a reaction
between oxygen, substrate and biomass. The biomass will grow and the concentration of the
substrate and oxygen will decrease. But the reaction will continue only in those regions where
the concentration of the biomass, oxygen and substrate is large enough, this means mainly in
the interface between the substrate and the surrounding region, where still enough oxygen is
available. Within these interfaces, the concentration of the oxygen will rapidly decrease, such
that here the biomass will die out. We expect that there is a sharp interface between the region
of oxygen and that of the substrate (see Reference [16]). Now, if we use a numerical scheme
with much numerical viscosity the interface between the substrate and oxygen is smeared out.
Therefore, the reaction between the substrate and oxygen will take place in this smeared out
region which is too large. This implies that the degradation of the substrate is too fast and
we would get a completely wrong solution. In Plate 1 we see the result for a �rst-order �nite
volume scheme on a coarse grid. The substrate has been degraded to zero too early. Plate 2
shows the biomass at that time.
For the used data we expect (see Reference [16]) that for T =180 days there is still a long,

thin layer of the substrate up to the right boundary of the channel. Therefore in this case it
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is absolutely necessary to get a high resolution of the transient region between the substrate
and the oxygen. In order to achieve this we have to use higher order schemes and a good
a posteriori error estimator for local grid re�nement in the transient region.
The mathematical model for the biodegradation consists of a weakly coupled system (1),

(2), (3) for the concentrations co; cs and X of the oxygen, the substrate and the biomass,
respectively.

�@tco + div(uco − �D(u)∇co) =−�okgr(co; cs; X ) (1)

�@tcs + div(ucs − �D(u)∇cs) =−�skgr(co; cs; X ); in ]0; 80[× ]0; 20[× ]0; T [ (2)

@tX = �Xkgr(co; cs; X )− kdecX: (3)

Here, the transport of the oxygen and the substrate are linear and are given by the known
velocity u. The porosity �∈ [0; 1] is a given constant. The di�usion D : Rd×R → Rd×d is
assumed to be a non-linear tensor of x and u which can degenerate. The reaction rates are
assumed to be of the form

kgr(co; cs; X ) :=�
co

co + Ko
cs

cs + Ks
X: (4)

The constant �o; �s and �X denote the corresponding stoichiometric coe�cients and kdec the
rate of decay of the biomass X . For the biomass we assume that there is no transport and no
di�usion. The initial and boundary conditions will be speci�ed in Section 4.
We want to derive an a posteriori error estimate for this weakly coupled system in order

to reduce the numerical viscosity in the critical transient region. The most challenging point
is that the di�usion may degenerate and that the a posteriori estimate should hold uniformly
with respect to the lower bound of D(x; u).
In order to demonstrate the main problems, let us consider the simple initial boundary value

problem

@tu+ divf(u)− ��u=f in �T

u=0 on @�× ]0; T [
u(x; 0) = u0(x) on �

(5)

with the small di�usion parameter �. General energy based techniques for getting a priori
error estimates give the following result (see Reference [17]).

Theorem 1 ([17])
Let u denote the exact solution of (5) and uh the corresponding numerical solution obtained
by a mixed �nite volume �nite element method (see (28) and (29)) and h the grid size. Then
we have

‖u(·; t k)− uh(·; t k)‖L2(�)6ch�ecT=�; (6)

where � and c are positive constants.
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This estimate strongly depends on the small parameter � and will explode if � tends to
zero. The situation is similar for the boundary value problem (7) and (8).

−��u+ a · ∇u+ bu=f in �; (7)

u=0 on @�: (8)

In Reference [18] for this problem the following a posteriori error estimate was proved. In
this case uh is given by a linear �nite element method.

Theorem 2 ([18])

‖u− uh‖26
∑
T∈Tl

�2T + · · · (data approximations) · · · (9)

where

�T := min
{
h√
�
; 1
}
‖fh − Luh‖L2(T ) + · · · (10)

The estimate is uniform only if the grid size h is of the order of the parameter �. There are
some results mainly in 1D where similar estimates have been proved, uniformly in � [7; 19].
While in References [18; 17] and many other papers the estimates are based on L2 energy
methods, in this paper we will give an overview of recent results concerning a posteriori error
estimates, which are based on the Kuznetsov method [15]. It was developed for the pure non-
linear hyperbolic case and can be generalized to the following equation (see Reference [20]).

@tu+ div(vf(u)−D(u)∇u) + �(u) = 0 in Rd× ]0; T [; (11)

u(·; 0) = u0 in Rd (12)

where the di�usion D(u) may degenerate. Here � is a given non-linear source term.
In the following, Section 2 we will brie�y describe a �nite volume scheme for solving scalar

non-linear conservation laws in multi-dimension. Then we present a posteriori error estimates
for this scheme. In Section 3 we will discuss some corresponding results for the initially
value problem for (11) and (12). Finally in Section 4 recent results concerning numerical
experiments for (1), (2) and (3) will be shown.

2. A POSTERIORI ERROR ESTIMATES FOR CONSERVATION LAWS

In this section, we are going to discuss an a posteriori error estimate [21] for

@tu+ divf(u) = 0 in Rd×R+; (13)

u(x; 0) = u0(x) in Rd: (14)

For the data we have to assume the following conditions. u0 ∈L∞(Rd)∩BVloc(Rd) with con-
stants A and B such that A6u06B a.e. and f∈C1(R).
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Let T = {Tj | j∈ I} be a mesh of Rd such that the interface of two neighbouring cells Tj; Tl
of T is included in a hyperplane (see also Reference [21]). The joint edge of Tj and Tl will
be denoted by Sjl. We assume that, for all h¿0, there exists an �¿0 such we have

�hd6meas(Tj); �meas(Sjl)6hd−1; diam(Tj)6h (15)

for all j; l∈ I . For any j; l∈ I there is a numerical �ux gjl :R2 → R which satis�es the
following conditions for all u; v; u′; v′ ∈ [A; B].

The numerical �ux gjl(u; v) is monotone increasing with

respect to u and monotone decreasing with respect to v
(16)

Furthermore

gjl(u; v)= − glj(v; u); gjl(u; u)= njl|Sjl|f(u); (17)

|gjl(u; v)− gjl(u′; v′)|6Lhjl(|u− u′|+ |v− v′|) (18)

where hjl := max{diam Tj; diam Tl}; �t is the timestep, tn := n�t and njl is the outer unit
normal to Sjl. Now the upwind �nite volume scheme for computing approximate solutions to
(13) and (14) is de�ned by

De�nition 1 (Finite volume scheme)
Let

u0j :=
1
|Tj|

∫
Tj
u0; un+1j := unj −

�t
|Tj|

∑
l∈N ( j)

gjl(unj ; u
n
l ) (19)

for all n∈N and j; l∈ I . Here N (j) denotes the indices of the neighbouring triangles of Tj.
For the time step we assume the following CFL-condition �t6(1− �)�2h=2L for a given

�∈ ]0; 1[ and � as de�ned in (15), where L is the Lipschitz constant from (18). Let us denote

uh(x; t) := unj if x∈Tj; tn¡t6tn+1: (20)

Let u be the exact solution of (13) and (14) and uh be the discrete solution as de�ned in
(20). In Reference [22–24] it was shown that under the assumption, mentioned above, we
have for any compact set K ⊂Rd×R+∫

K
|u(x; t)− uh(x; t)| dx dt6ch1=4 (21)

where the constant c depends only on K and the given data.
Now let us present the corresponding a posteriori error estimate in the case d=2. Let

R;!; T be given and

I0 :=
{
n | 06tn6min

{
R+ 1
!

; T
}}

DR+1 := {(x; t) | |x − x0|+!t¡R+ 1}
M (t) := {j | there exists x∈Tj such that (x; t)∈DR+1}: (22)
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Figure 2. Cone of dependence.

Theorem 3 ([21])
Assume the conditions as mentioned above and u0 ∈BV (R2). Let K ⊂⊂R2×R+; != supA6s6B
|f(s)| and choose T; R and x0 such that T ∈ ]0; R=![ and see Figure 2)

K ⊂ ⋃
06t6T

BR−!t(x0)×{t}: (23)

Then we have∫
K
|u− uh|6Ta0

(∫
|x−x0|¡R+1

|u0(x)− uh(x; 0)| dx + aQ + 2
√
bcQ

)
(24)

where

Q :=
∑
n∈I0

∑
j∈M (tn)

�tnh2j |un+1j − unj |+ 2L�tn
∑
n

∑
E(tn)
(�t + hjl)hjl|unj − unl | (25)

and E(tn) is the set of all edges, which lie in M (tn). In the sum over E(tn) the indices j; l
refer to the triangles Tj; Tl such that Tj ∩Tl is the corresponding edge.
Remark 4
The constants a0; a; b; c are explicitly known. A corresponding result also holds in Rd with
d¿2. Under suitable conditions this theorem can be generalized if we replace f(u) by
f(x; t; u) (see Reference [21]).

Example 5
Now let us use the a posteriori error estimate of Theorem 3 for the following numerical
experiment. We want to solve (13) and (14) with f(u) := (u2; u2)t and

u0(x)=2 if
x1 + x2
2

− 0:560;

u0(x)=1 if
x1 + x2
2

− 0:5¿0:
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Figure 3. Burgers shocktype problem.

We want to get an approximate solution such that the error measured in the L1-norm at time
t=0:086 in the circle B0:1(0:75; 0:75) is within a given tolerance. The corresponding grids
which are produced by the error estimator of Theorem 3 for di�erent times can be seen in
Figure 3.

3. A POSTERIORI ERROR ESTIMATES FOR CONVECTION DOMINATED
DIFFUSION EQUATIONS

The result in Theorem 3 can be generalized to the following convection dominated di�usion
equation.

@tu+ div(vf(u)−D(u)∇u) + �u=0 in Rd× ]0; T [; (26)
u(·; 0) = u0 in Rd: (27)

For the data we assume that

f∈C2(R;R); and all derivatives are bounded; D∈C1(R); D(s)¿0 ∀s∈R;
v∈ (C1 ∩L∞)(Rd× ]0; T [;R2); div v=0;

�∈ (C1 ∩L∞)(Rd× ]0; T [;R); u0 ∈ (L∞ ∩W 1;1)(Rd;R):

Now since D(u) can degenerate, it turns out that weak solutions in L1(Rd×R+) are not
unique. Therefore we have to de�ne entropy solutions, similar as for conservation laws.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:79–91
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Figure 4. Notation of the triangulation and dual mesh.

De�nition 2 (Entropy solution)
Let U be a smooth, strict convex entropy function and F a corresponding entropy �ux
(@vF(v; 	)=f′(v)U ′(v− 	)). A weak solution of (26) and (27) is called an entropy solution
of (26) and (27) if,

∫
Rd×R+

U (u− 	)@t’+ [F(u; 	)v−D(u)U ′(u− 	)∇u] · ∇’− �CU ′(u− 	)’

+
∫
Rd
U (u0 − 	)’(·; 0)¿

∫
D(u(x; t))¿0

D(u)U ′′(u− 	)|∇u|2’

∀’∈C∞
0 (Rd× [0; T [); ∀’¿0; ∀	∈R.

It was shown in Reference [25] that under the above assumptions a unique entropy solution
u of (26) and (27) exists. Now let us describe the numerical scheme for which we will show
an a posteriori result. The scheme is similar to that one in Reference [17]. The notation
will be explained in Figure 4. The triangulation has to satisfy the conditions (15), and the
numerical �uxes the conditions (16), (17), (18) mentioned in Section 2. Let

u0j :=
1

|�j|
∫
�j
u0; (28)

un+1j := unj −
�tn

|�j|
∑
l∈Nj

∑
i∈{a; b}

[gi; n+1jl (un+1jl ; u
n+1
l )− di; n+1jl (un+1h )]

−�tn�n+1j un+1j : (29)

Here unh denotes the piecewise linear function which satis�es u
n
h(pj)= u

n
j , and d

i; n
jl (uh)=

∫
Sijl
D

∇unh · nijl. The following result has been proved in Reference [20].
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Plate 1. Distribution of substrate after T =180 days.

Plate 2. Distribution of biomass after T =180 days.

Plate 3. Reference solution on a �ne adapted grid with 92837 dual cells.

Plate 4. Example 9 with 1778 dual cells.
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Plate 5. Example 9 with 10152 dual cells.

Plate 6. Distribution of oxygen after T =180 days.

Plate 7. Distribution of substrate after T =180 days.

Plate 8. Distribution of biomass after T =180 days.
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Theorem 6 ([20])
Assume D=constant¿0; �=0. Then

‖uh − u‖L1(Rd × ]0;T [)6�

where

� :=
T
ln 2

(�0 + k2�̃+
√
k4�u +

√
6k3�̃) (30)

�̃ := �t + �c + �d + �p;1 (31)

�0 :=
∫
R2

|uh(x; 0)− u0(x)|dx (32)

�t :=
∑
n

∑
j
|un+1j − unj |�tn|�j| (33)

�c :=
∑
n

∑
dual edges

(hjl +�tn)�tnQi; n+1jl |un+1j − un+1l | (34)

�d :=
∑
n

∑
edges

(hjl +�tn)�tn|�jl|D[∇un+1h ·mjl]�jl (35)

�u := 4
∑
n

∑
edges

D[∇un+1h ·mjl]�jl�tn|�jl||un+1j − un+1l | (36)

�p;1 :=
∑
n

∑
j
(1 + |v|Lf)hj�tn

∫
�j
|∇uh(x; tn+1)|dx (37)

Qn+1jl (v; w) :=
2gi; n+1jl (v; w)− gi; n+1jl (v; v)− gi; n+1jl (w;w)

(v− w) (38)

[∇un+1h ·mjl]�jl := |(∇un+1h |Tsjl −∇un+1h |Tbjl ) ·mjl|: (39)

∑
n denotes the sum over all timesteps,

∑
dual edges the sum over all edges of the dual cells.

If Sijl is a dual edge, then j and l are de�ned as in Figure 4.
∑

edges denotes the sum over
all edges of the triangles. If �jl is one of these edges, then j; l are de�ned again by Figure 4.
All constants are known explicitly.

Remark 7
If � 	=0 a similar result holds with a modi�ed � depending on �.
Remark 8
In a forthcoming paper [26] this result will be generalized to weakly coupled systems as in
Reference [27]. Then the mathematical model for the biodegradation (1), (2) and (3) will be
covered by this generalization.
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Example 9
Now again let us use the a posteriori error estimate of Theorem 6 for the following numerical
experiment (for details see Reference [20]). We want to solve

�@tu+ div(vf(u)− KD∇u) + �(·; u) = 0 in ]0; 1[× ]0; 0:5[× ]0; T [;
u(·; 0) = 1 in B0;0:25(0:1; 0:25);
u(·; 0) = 0 else

where

f(u) := u2; v=(0:5; 0); D=0:0001; �=0:2; K =0:2

and

�(·; u) = 10u(1− u)3 − 100 1− u
1− u+ 0:1 in B0:025(0:1; 0:25);

�(·; u) = 10u(1− u)3 else:

The reference solution on a very �ne adapted grid can be seen in Plate 3. The results in
Plates 4 and 5 indicate that for grids with less resolution the length of the contaminated area
is too short.

4. NUMERICAL EXPERIMENTS FOR BIODEGRADATION

In this section, we will present some numerical results concerning the system (1), (2) and
(3). This is a mathematical model for the process of biodegradation. In this case, we use the
de�nition (4) and

�=0:3; u(x; t) =
(
2× 10−5; 8× 10−6 sin

(
6
80
x1 − 1

20

))t
;

D(u)ij := �
ij + �T
ij|u|+ (�L − �T )uiuj|u| ;
� = 10−9; �T =0:002; �L=0:01

and Ko; Ks; �o; �s; kdec; � are suitable constants (see Reference [16]). We consider the following
initial values for (1), (2) and (3)

co(x; 0) = 5× 10−6 in �1
co(x; 0) = 0 in �2
cs(x; 0) = 0 in �1
cs(x; 0) = 2× 10−6 in �2
X (x; 0) = 10−9 in �1 ∪�2:

(40)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:79–91
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Figure 5. EOC and numerical solutions.

Table I. EOCL1 and L
1-error for the �nite volume scheme �rst [A] and second [B] order.

h ‖c − cAh ‖L1 EOCAL1 ‖c − cBh‖L1 EOCBL1 CPU-time in s Memory
A vs B usage in MB

0.3536 0.6579 0.3485 0.1 0.1 0.1 0.1
0.1768 0.4847 0.441 0.1776 0.973 0.2 0.9 0.2 0.2
0.0884 0.3485 0.476 0.0892 0.993 3 7 0.6 0.6
0.0442 0.2462 0.502 0.0446 0.999 28 57 2.3 2.4
0.0221 0.1735 0.505 0.0223 1.0 235 487 8.7 9.3
0.0110 0.1224 0.503 0.0112 1.0 1916 4016 34.4 36.9
0.0055 0.0865 0.501 0.0056 1.0 15528 33315 137.3 147.3

As boundary conditions we use

co = 5× 10−6; cs = 2× 10−6 on the left;
lower; and upper boundary of the channel:

(41)

On the right part of the channel we need no conditions for co; cs since the x-component of
the velocity u is positive and since we use an upwinding discretization. The discretization for
(1), (2) and (3) is a mixed �nite volume �nite element method as described in (28) and (29)
for the scalar equation. It is explicit for the convective terms and implicit for the di�usive
terms. In addition to that we use a higher order discretization in space, based on non-linear
limiters. For the validation of the scheme we have used a linear transport problem for which
we know the exact solution. The error and the experimental order of convergence are shown
in Figure 5 and Table I.
In Plates 6, 7 and 8 the numerical solutions for (1), (2), (3), (40), (41) obtained by (28),

(29) are shown. For the a posteriori error estimate we use the indicators (32); : : : ;(35) as

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:79–91
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Figure 6. Adapted dual mesh with 7530 cells.

de�ned in Theorem 6 for each component. The sum of these is used in the de�nition of � in
(30). We obtain a layer of the transported substrate up to the right boundary of the channel.
The interfaces between the substrate and the oxygen in the neighbourhood remains sharp. This
is consistent with the results in Reference [16] which are obtained on a �xed unstructured
grid. In Figure 6 the corresponding locally re�ned grid, which is produced with the error
estimator of Theorem 6, is presented.
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